1. Description of motion:

AB : uniform acceleration OR vincreases at constant rate
[Not accelerates constantly]
BC: sudden deceleration OR slows down/stops rapidly

Explanation of cause of motion:
$\begin{array}{ll}\mathrm{AB}: & \text { Attraction to positive/power supply/the voltage/energy of } \\ \text { supply/(electric) force from supply OR electric field (in wire) }\end{array}$
BC : collision with ion/atom/electron/nucleus/lattice

Explanation of term drift velocity:
Drift velocity: average mean/net/overall velocity of electron along wire
[Not speed]
Value shown on graph (allow between $1 / 3$ and $2 / 3$ of maximum velocity)
[Line or mark on graph axis, label not needed if only one line/mark]

Explanation of why wire gets warm:
Collision makes ion/atom vibrate more vigorously
OR in collision energy is transferred to lattice
2. $t=2.1 \mathrm{~s}$

Represents acceleration of the ball
Force on ball or gravitational field strength or acceleration is constant or uniform
Relevant equation or correct area
Substitution correct
Displacement /m

Displacement scale as shown above
First half of curve correct
Second half correct with reduced height 3
-1.25 m (correct magnitude and direction)
[Look at candidate 's displacement origin]
3. Gradient

Use a gradient or use of $v=u+a t(\mathbf{1})$
10 (either no unit or $\mathrm{m} \mathrm{s}^{-2}$) (1)
[A bare answer of 9.8 gets no marks; A bare answer of 10 gets 2 marks]

Significance

It is the acceleration (due to gravity) or close to $g(1)$
Ball at point A
It hit the floor/bounces/(idea of collision with floor) (1)
Calculation of height of window above ground
An area / quote an equation of motion (1)
Put in relevant numbers for large triangle / correct substitution
[ecf from first part, or use of 9.8] (1)
45 m [accept 44 to 46] (1) 3
4. (i) Distance travelled

Attempt to find area under curve/use of suitable equations (1)
Distance $=300 \mathrm{~m}(\mathbf{1})$
(ii) Averape speed

Use of total distance/20 (1)
Average speed $=15 \mathrm{~m} \mathrm{~s}^{-1}$ [e.c.f. distance above] (1)
5. Average deceleration

Select $v^{2}=u^{2}+2 a x, 1 / 2 \mathrm{~m} v^{2}=F x$ and $F=m a$ OR equations of motion (1)
Correct substitutions of 40 m and $25 \mathrm{~m} \mathrm{~s}^{-1}$ (1)
$a=7.8 \mathrm{~m} \mathrm{~s}^{-2}$ [If $a=-7.8 \mathrm{~m} \mathrm{~s}^{-2} \rightarrow 2 / 3$] (1)
Depth of sand and stopping distance
More sand \Rightarrow shorter stopping distance/stops more quickly/slows down faster Because lorry sinks further/ bigger resisting
force / bigger friction force (1)
6. Deceleration of cars

Acceleration = gradient / suitable eqn. of motion. (1)
Correct substitutions [0.9 for t is wrong] (1)
$6.1-6.3 \mathrm{~m} \mathrm{~s}^{-2}$ [-ve value -1] [no ecf] (1) 3

Area under velocity-time graph

Distance/displacement (1)	1

Shaded area
$6.9-7.5$ (1)
m (1)2
[Allow 1 mark for $5.5-6.1 \mathrm{~cm}^{2}$.]
Minimum value of the initial separation
Same as above [ecf] (1)
Area is the extra distance car B travels/how much closer they get (1) 2
Graph
Both sloping lines continued down to time axis [by eye] (1) 1
Explanation
Area between graphs is larger/B travels faster for longer/B still moving when A stops (1)
Extra distance B goes is larger/ > '7.2’ (1)
Initial separation must be greater (1) Max 2
7. Maximum velocity

Area $=100$ m (1)
Attempt to find area of trapezium by correct method (1)
$v=10 \mathrm{~m} \mathrm{~s}^{-1}$ (1)

Sketch graph

Horizontal line parallel to x axis
Some indication that acceleration becomes $0 \mathrm{~m} \mathrm{~s}^{-2}$
The initial acceleration labelled to be $v_{\max } \div 2$ [initial $a=5\left(\mathrm{~m} \mathrm{~s}^{-2}\right)(\mathbf{1})$ (ecf)]
$t=2$ (s) where graph shape changes (1) 4

