t = 2.18
Represents acceleration of the ball
Force on ball <i>or</i> gravitational field strength <i>or</i> acceleration is constant <i>or</i> uniform
Relevant equation or correct area
Substitution correct

Displacement /m t/s 0 0.5 1.0

Explanation of term *drift velocity:*

BC:

Description of motion:

[Not accelerates constantly]

Explanation of cause of motion:

1.

Drift velocity: average mean/net/overall velocity of electron along wire
[Not speed]
Value shown on graph (allow between 1/3 and 2/3 of maximum velocity)
[Line or mark on graph axis, label not needed if only one line/mark]
Explanation of why wire gets warm:

AB: <u>uniform</u> acceleration OR vincreases at constant rate

BC: sudden deceleration OR slows down/stops rapidly

AB: Attraction to positive/power supply/the voltage/energy of

collision with ion/atom/electron/nucleus/lattice

supply/(electric) force from supply OR electric field (in wire)

Collision makes ion/atom vibrate more vigorously	
OR in collision energy is transferred to lattice	(1)

1

[7]

(1)

(1) 2

(1)

(1) 2

(1)

(1)

2

1

1

2

2

	Displacement scale as shown above First half of curve correct Second half correct with reduced height	3	
	-1.25 m (correct magnitude <i>and</i> direction) [Look at candidate 's displacement origin]	1	[9]
3.	Gradient		
	Use a gradient or use of $v = u + at$ (1)		
	10 (either no unit or m s ⁻²) (1)		
	[A bare answer of 9.8 gets no marks; A bare answer of 10 gets 2 marks]		
	Significance		
	It is the acceleration (due to gravity) or close to g (1)	3	
	Ball at point A		
	It hit the floor/bounces/(idea of collision with floor) (1)	1	
	Calculation of height of window above ground		
	An area / quote an equation of motion (1)		
	Put in relevant numbers for large triangle / correct substitution [ecf from first part, or use of 9.8] (1)		
	45 m [accept 44 to 46] (1)	3	[7]
4.	(i) Distance travelled		
	Attempt to find area under curve/use of suitable equations (1)		
	Distance = 300 m (1)		
	(ii) Averape speed		
	Use of total distance/20 (1)		
	Average speed = 15 m s^{-1} [e.c.f. distance above] (1)		[4]
5.	Average deceleration		
	Select $v^2 = u^2 + 2ax$, $\frac{1}{2}$ m $v^2 = Fx$ and $F = ma$ OR equations of motion (1)		
	Correct substitutions of 40 m and 25 m s^{-1} (1)		
	$a = 7.8 \text{ m s}^{-2}$ [If $a = -7.8 \text{ m s}^{-2} \rightarrow 2/3$] (1)	3	
	Depth of sand and stopping distance		
	More sand \Rightarrow shorter stopping distance/stops more quickly/slows down faster Because lorry sinks further/bigger resisting		
	force / bigger friction force (1)	1	[4]

6.	<u>Deceleration of cars</u> Acceleration = gradient / suitable eqn. of motion. (1) Correct substitutions [0.9 for t is wrong] (1) $6.1 - 6.3 \text{ m s}^{-2}$ [-ve value -1] [no ecf] (1)	3	
	<u>Area under velocity-time graph</u> Distance/displacement (1)	1	
	$\frac{\text{Shaded area}}{6.9 - 7.5}$ (1) m (1)	2	
	[Allow 1 mark for $5.5 - 6.1 \text{ cm}^2$.]		
	Minimum value of the initial separation Same as above [ecf] (1) Area is the extra distance car B travels/how much closer they get (1)	2	
	<u>Graph</u> Both sloping lines continued down to time axis [by eye] (1)	1	
	Explanation Area between graphs is larger/B travels faster for longer/B still moving when A stops (1) Extra distance B goes is larger/ > '7.2' (1) Initial separation must be greater (1)	Max 2	[11]
7.	Maximum velocity		
	Area = 100 m (1)		
	Attempt to find area of trapezium by correct method (1)		
	$v = 10 \text{ m s}^{-1}$ (1)	3	
	Sketch graph		
	Horizontal line parallel to x axis		
	Some indication that acceleration becomes 0 m s^{-2}		
	The initial acceleration labelled to be $v_{\text{max}} \div 2$ [initial $a = 5 \text{ (m s}^{-2})$ (1) (ecf)]		
	t = 2 (s) where graph shape changes (1)	4	[7]